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Abstract
The structure of a single tilted flux line in an anisotropic (d + s)-wave super-
conductor has been analysed within the Ginzburg–Landau theory generalized
for two complex order parameter components. The angular dependence of the
lower critical field Hc1 and the vortex structure have been studied for different
orientations of an applied magnetic field with respect to the crystal axes. In
the limit of weak anisotropy (which can be treated within the Ginzburg–Landau
theory with an anisotropic mass tensor), the arrangement of s-wave unit vortices
induced in the core is shown to strongly depend on the field orientation. For a
large-anisotropy limit (i.e. for layered Josephson coupled systems) the fourfold
anisotropy of Hc1 is shown to be dominated by the contributions which come
from the Josephson string regions.

1. Introduction

In recent years, the mixed state of high-Tc superconductors has attracted a great deal of interest.
In particular, this interest is stimulated by experiments which provide good evidence for an
order parameter (OP) with mixed symmetry (i.e., dominant d wave and subdominant s wave)
in these compounds. A great number of features of such materials can be treated within the
Ginzburg–Landau (GL) theory with an OP consisting of two components corresponding to the
d- and s-wave pairing. It is obvious that the presence of two OP components influences the
structure of vortices. As shown in a number of works (see e.g. references [1–4]), a flux line
in such materials contains several unit vortices with different OP components. Since high-Tc
cuprates are layered structures, the concrete form of the extended GL theory depends on the
ratio s/ξc (s is the interlayer distance, ξc(T ) is the coherence length along the c-axis):

(i) When s/ξc � 1 (the weak-anisotropy limit), we have anisotropic 3D superconductivity.
This situation can be described within the framework of GL theory with an anisotropic
mass tensor.
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(ii) Quasi-two-dimensional (2D) superconductivity (the strong-anisotropy limit: s/ξc � 1).
In this case the system consists of superconducting layers coupled by Josephson
interaction. Such compounds are described by the Lawrence–Doniach (LD) functional of
free energy.

Previously, for the case of a weak anisotropy, the vortex structure in (d + s)-wave super-
conductors has been studied in detail only for the magnetic field direction parallel to the
c-axis (in this special case the structure of the flux line does not depend on the value of
s/ξc. As shown in a number of works [1–4, 7], the structure of singular flux lines in (d + s)-
wave superconductors exhibits a fourfold symmetry in contrast to the case for nonsingular
vortices [8]. The core structure for an arbitrary magnetic field orientation has been investigated
numerically by Vicente Alvarez et al [9]. It was shown that as the magnetic field tilts from the
c-axis, the fourfold symmetry of a flux line turns into a twofold one. As the angle between
the magnetic field direction and the c-axis increases, the two s-wave unit vortices move off the
centre of the flux line, while the other two s-wave vortices move towards the centre. Previously,
a similar change of vortex structures in a tilted magnetic field has been studied analytically
for heavy-fermion systems [10]. It should be noted that the vortices with twofold symmetry
have been studied [11] for the magnetic field orientation along the c-axis in the case where the
subdominant s-wave OP component is nonzero far from the vortex.

In the case of a strong anisotropy, the flux line is a stack of 2D pancakes in super-
conducting layers, which are connected by Josephson strings (see e.g. papers [5, 6]). As
shown for the conventional one-component layered superconductors, the structure of such
a flux line strongly depends on the magnetic field direction (see the detailed analysis in
e.g. reference [5]). When the magnetic field is close to the c-axis, the picture is very similar to
that of the three-dimensional (3D) theory. Deviations from the 3D theory are most substantial
for field orientations close to the layers.

In this paper we develop an analytical description of a single vortex structure in a
(dx2−y2 + s)-wave cuprate for an arbitrary direction of the external magnetic field with respect
to the crystalline axes for both weak- and strong-anisotropy limits. We restrict ourselves to
the case of a pure d-wave OP far from the flux line. We find that the arrangement of s-wave
vortices crucially depends on the angle between the magnetic field direction and the c-axis.
Taking into account the distribution of a subdominant s-wave OP component in the core of a
tilted vortex, we calculate the angular dependence of the lower critical magnetic field Hc1.

2. Tilted vortex structure in anisotropic 3D superconductors (the weak-anisotropy
limit, s � ξc)

We start with the case of a (dx2−y2 + s)-wave superconductor with an anisotropic mass tensor.
Let us consider the Ginzburg–Landau functional [3, 9] which is generalized for the case of
two components of the OP �d and �s corresponding to the dx2−y2 -wave and s-wave pairing,
respectively:

F =
∫ {

[ad|�d|2 + as|�s|2 +
bd

2
|�d|4 +

bs

2
|�s|4 + β1|�d|2|�s|2 +

β2

2
(�2

d�
∗2
s + �∗2

d �2
s )

+ Kd|(Π‖ + γd�zz0)�d|2 + Ks|(Π‖ + γs�zz0)�s|2

+Ksd[((�x�s)
∗�x�d − (�y�s)

∗�y�d) + c.c.]

}
dV (1)

where

Π‖ = ∇r − i
2π

�0
A‖ �z = ∇z − i

2π

�0
Az r = (x, y)
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(�0 is the flux quantum), A = (A‖, Az), H = curl A, �d(r) and �s(r) are the components
of the OP, as = αs(T − Tcs), ad = αd(T − Tcd), and γs, γd are the anisotropy parameters for
the s- and d-wave OP components. We choose x, y, z lying along the crystallographic a-, b-,
and c-axes, respectively.

The equations for the order parameters are obtained by varying the free energy with respect
to �∗

d and �∗
s :

ad�d + bd|�d|2�d + β1|�s|2�d + β2�
2
s �

∗
d − KdΠ2�d − Ksd[�2

x − �2
y]�s = 0

as�s + bs|�s|2�s + β1|�d|2�s + β2�
2
d�

∗
s − KsΠ2�s − Ksd[�2

x − �2
y]�d = 0.

(2)

Let us introduce the unit vector n along a vortex line: n = (sin θ cosα, sin θ sin α, cos θ). We
assume Tcs < Tcd, and T is close to Tcd (|as| � |ad|). In this case the dominant d-wave OP
component induces a small subdominant s-wave component in a flux line which can be obtained
using perturbation theory with a small parameter as/|ad|. Hereafter we consider an extreme
type-II limit, where the coupling to the vector potential can be ignored while studying the core
structure of an isolated vortex line. For the sake of convenience, we rescale and rotate the
coordinate system so that the new one is isotropic and the vortex line lies along a new z-axis:

x̃ = [x cosα + y sin α] cos θ̃ − γdz sin θ̃

ỹ = −x sin α + y cosα

z̃ = [x cosα + y sin α] sin θ̃ + γdz cos θ̃

where θ̃ = tan−1(γ−1
d tan θ). In the transformed coordinates the expression for the s-wave

component in the first order of the perturbation theory in as/|ad| reads

�s = Ksd

as
[cos 2α(cos2 θ̃ ∇2

x̃ − ∇2
ỹ ) − sin 2α cos θ̃ (∇x̃∇ỹ + ∇ỹ∇x̃ )]�d. (3)

Here

�d = D(r) exp(iϕ)

is the conventional vortex solution of the one-component GL theory, (r =
√
x̃2 + ỹ2, ϕ =

tan−1(ỹ/x̃)). In order to investigate the structure of�s we use the following approximation [12]
for D(r):

D(r) = D∞r/
√
r2 + d2 (D∞ =

√
|ad|/bd).

Note that

d =
√

2ξd (ξd =
√
Kd/|ad|)

for extreme type-II superconductors. The s-wave OP component distribution in the plane
perpendicular to the magnetic field direction has the following form:

�s = S3(r)e
i 3ϕ + S1(r)e

iϕ + S−1(r)e
−iϕ (4)

where

S3(r) = 3D∞
Ksd

Kd

|ad|
as

r3

(r2 + d2)5/2
[(1 + cos2 θ) cos 2α + 2i cos θ sin 2α]

S1(r) = −4D∞
Ksd

Kd

|ad|
as

r(r2 + 4d2)

(r2 + d2)5/2
sin2 θ cos 2α

S−1(r) = D∞
Ksd

Kd

|ad|
as

r(r2 + 4d2)

(r2 + d2)5/2
[(1 + cos2 θ) cos 2α − 2i cos θ sin 2α].

(5)

Expressions (4), (5) describe the evolution of the vortex structure as a function of the
angles between the external field and the crystalline axes. One can see that the vortex structure
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exhibits a fourfold symmetry only if θ = 0 (when the magnetic field is parallel to the c-axis);
otherwise we have twofold symmetry of the flux line (figure 1). Figure 1 shows the contour
plot of the absolute value of the s-wave component in the vortex for α = 15◦ and different
values of θ . Note that this plot is drawn in the rotated (but not rescaled) coordinates (X, Y ):

X = [x cosα + y sin α] cos θ − z sin θ

Y = −x sin α + y cosα

Z = [x cosα + y sin α] sin θ + z cos θ

R =
√
X2 + Y 2.

(6)

The typical arrangement of s-wave unit vortices in the vicinity of the d-wave core, for different
values of θ in the plane perpendicular to the flux line, is shown in figure 2 in the coordinates (6).
As the angle between the magnetic field direction and the c-axis increases, two s-wave vortices
(A and C) with the same winding number as for the d-wave vortex (N = +1) move away from
the centre of the flux line. At the same time, the other two s-wave vortices (B and D) move
towards the s-wave antivortex (O). When θ approaches a certain critical angle θ∗, the latter
two vortices merge with the s-wave antivortex (O) into the central vortex (O′) with a winding
number N = +1. Finally, when the magnetic field lies in the ab-plane (θ = π/2), there is only
one s-wave unit vortex with the positive winding number in the d-wave vortex core.

The coordinates of the vortices A and C are

rA,C = d

[
2

√
(1 + cos2 θ)2 + 4 tan2 2α cos2 θ + 2 sin2 θ√
(1 + cos2 θ)2 + 4 tan2 2α cos2 θ − sin2 θ

]1/2

ϕA = −1

2
tan−1

(
2 tan 2α

cos θ

1 + cos2 θ

)
ϕC = π + ϕA

(7)
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Figure 1. Contour plots of the s-wave OP component for α = 15◦ and different values of θ :
θ = 0◦ (a), θ = 45◦ (b), θ = 80◦ (c), θ = 90◦ (d).
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Figure 2. The typical arrangement of s-wave unit vortices in the vicinity of the d-wave vortex for
the same angles as in figure 1. Open circles denote s-wave vortices with the same winding number
as a d-wave vortex (N = +1); black circles denote the s-wave antivortices with N = −1.

while the coordinates of the vortices B and D are

rB,D = d

[
2

√
(1 + cos2 θ)2 + 4 tan2 2α cos2 θ − 2 sin2 θ√
(1 + cos2 θ)2 + 4 tan2 2α cos2 θ + sin2 θ

]1/2

ϕB = π

2
− 1

2
tan−1

(
2 tan 2α

cos θ

1 + cos2 θ

)
ϕD = π + ϕB.

(8)

For θ close to π/2, the distance between vortices O and A and that between O and C can
be approximated by a 1/ cos θ dependence. Note that expressions (7), (8) are written in the
coordinate system (3).

The dependences of rA,C and rB,D on the angle θ are shown in figure 3 for different values
of α. The dependence of θ∗ (when the s-wave vortex arrangement changes qualitatively) on
the angle α for different anisotropy parameters γd takes the form (see figure 4)

θ∗ = tan−1 γd

√√√√√
(2 tan2 2α + 5)2 − 9 − 2(1 − tan2 2α)

5 + 2 tan2 2α −
√
(2 tan2 2α + 5)2 − 9

.

Note that the flux line orientation α = π/4 is a special case, since S−1(r) ≡ 0 and the
s-wave OP component has a fourfold symmetry for any value of θ . This fact is due to
the symmetry of the s + d coupling which cancels the induced s-wave component when the
gradients along the crystalline a- and b-axes are equal. The amplitude of the absolute value of
�s decreases as cos θ with increasing θ and finally becomes zero when θ approaches π/2.

It is obvious that the internal structure of the flux line affects the dependence of Hc1 on the
magnetic field direction. An additional term of Hc1, which depends on α and θ , is proportional
to the additional term of the free-energy functional which is due to the presence of a nonzero
s-wave component. Within the first order of the perturbation theory, the angle-dependent
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Figure 3. The distance between the d-wave unit vortex and s-wave ones versus the magnetic field
direction for α = 0◦ (solid lines) and α = 15◦ (dashed lines). The upper lines correspond to the
distance between O and A (or C) and the lower lines correspond to the distance between O and B
(or D); see figure 2.
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Figure 4. The dependence of the critical angle θ∗
on the magnetic field direction in the ab-plane for
different values of the anisotropy parameter γd.

additional term in the lower critical magnetic field Hc1 reads

'Hc1(θ, α) = 4π

�0
'F(θ, α) = 4π

�0
asξd

∫ 2π

0
dϕ

∫ ∞

0
|�s(r, ϕ)|2r dr

∼= �0

λ2
abγd

K2
sd

K2
d

|ad|
as

√
γ 2

d cos2 θ + sin2 θ

×
{

cos2 2α[(1 + cos2 θ̃ )2 + 2 sin4 θ̃ ] + 4 sin2 2α cos2 θ̃ − 4
}
. (9)

This term reflects the presence of the s-wave OP component and possesses a fourfold
symmetry in the ab-plane.

3. Tilted vortex structure in quasi-2D superconductors (the strong-anisotropy limit,
s � ξc)

In this part we discuss the structure of the s-wave component in the tilted vortex in quasi-2D
superconductors. The LD free-energy functional for systems with (dx2−y2 + s)-wave pairing



Structure of tilted vortices 6011

has the following form:

F =
+∞∑

n=−∞

∫ {
ad|�dn|2 + as|�sn|2 +

bd

2
|�dn|4 +

bs

2
|�sn|4 + β1|�dn|2|�sn|2

+
β2

2
(�2

dn�
∗2
sn + �∗2

dn�
2
sn) + Ks|Πn�sn|2 + Kd|Πn�dn|2

+ Ksd[(�∗
nx�

∗
sn�nx�dn − �∗

ny�
∗
sn�ny�dn) + c.c.]

+
ρs

2
|�sn − �s,n+1e−iχn,n+1 |2 +

ρd

2
|�dn − �d,n+1e−iχn,n+1 |2

}
dr (10)

where

Πn = ∇ − i
2π

�0
An

and r = (x, y), ∇ = ∂/∂r, An = (Ax(r, z = ns), Ay(r, z = ns)), H = curl A, �dn(r) and
�sn(r) are the OP components in the nth layer (z = ns), s is the interlayer spacing, and

χn,n+1 = 2π

�0

∫ (n+1)s

ns

Az dz.

The equations for �d and �s are written as follows:

ad�dn + bd|�dn|2�dn + β1|�sn|2�dn + β2�
2
sn�

∗
dn − KdΠ2

n�dn

+ Ksd(�
2
ny − �2

nx)�sn +
ρd

2
(2�dn − �d,n+1e−iχn,n+1 − �d,n−1eiχn−1,n ) = 0

as�sn + bs|�sn|2�sn + β1|�dn|2�sn + β2�
2
dn�

∗
sn − KsΠn

2�sn

+ Ksd(�
2
ny − �2

nx)�dn +
ρs

2
(2�sn − �s,n+1e−iχn,n+1 − �s,n−1eiχn−1,n ) = 0.

(11)

In this section we restrict ourselves to the most interesting case of the angle domain
λJ /s � tan θ � λc/s (λJ = √

2Kd/ρd is the Josephson length), since in this angle domain
the difference between the quasi-2D theory and the 3D theory is at its most significant. The
induced s-wave component appears to be essential only in the r-domains close to the vortex
line axis. As a result, for angles tan θ � λc/s (λc is the magnetic field penetration depth [5])
we can neglect the screening effects in these domains and put A = 0. We again rotate the
coordinate system so that the vortex line lies in the xz-plane. The expression for the s-wave
component in the first-order perturbation theory (see section 2) in the new coordinates reads

�sn = Ksd

as
[(∇2

x − ∇2
y )�dn cos 2α − (∇x∇y + ∇y∇x)�dn sin 2α]. (12)

Outside the normal core regions we can put �dn = exp(iϕn), where ϕn is the phase in
the nth layer. The phase ϕn can be obtained from the equation for the d-wave OP, where the
s-wave OP is neglected. Thus, ϕn is the solution for the tilted vortex in the conventional layered
superconductors (see e.g. reference [5]).

In the layered compounds the flux line is a stack of pancakes connected by Josephson
strings. There are several regions [5] in each layer with qualitatively different behaviours of
the phase ϕn (see figure 5). The normal core region (r < ξab) is an area of suppression
of the absolute value of the OP. The 2D core region is an area where |�dn| = constant,
while the phase is that of a pancake. Inside this 2D London region (r < λJ ) the phase is
given by ϕn = tan−1(x/y). In a Josephson string (λJ � |x| � s tan θ and |y| < λJ ) we have
|∇xϕn| � |∇yϕn|; therefore, we neglect ∇xϕn and use the linear approximation for the phase:

∇yϕn(x, y) = ϕn(x, λJ ) − ϕn(x,−λJ )

2λJ
= π

2λJ
.
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Figure 5. Normal cores (black regions), 2D cores (grey regions), and the Josephson string (the
regions between dashed lines) are shown schematically for a tilted vortex in the angular domain
λJ /s � tan θ � λc/s.

For a 3D London region (|x| � s tan θ and |y| � λJ ) we have a conventional anisotropic GL
solution for the phase:

ϕn = tan−1

(
γ

tan θ

x

y

)
where γ = λJ /s is the anisotropy parameter.

The additional term in the functional F , which is connected with the s-wave OP, reads

'F(θ, α) = − �2
0sξ

2
d

32π3λ2
ab

K2
sd

K2
d

|ad|
as

×
+∞∑

n=−∞

∫
{([(∇xϕn)

2 − (∇yϕn)
2] cos 2α − 2∇x∇yϕn sin 2α)2

+ ([∇2
y − ∇2

x ]ϕn cos 2α − [∇x∇y + ∇y∇x]ϕn sin 2α)2} dr (13)

where ξd = √
Kd/|ad| is the coherence length of the d-wave component in the ab-plane.

Within our approach we can calculate the vortex energy per unit length in the most
interesting interval of angles θ , where λJ /s � tan θ . We choose this interval of angles because
the main contribution to the integral in (13) comes from the Josephson string and for other
angles the α-dependent additional term in Hc1 is neglected.

The α-dependent correction to Hc1 (which reflects the existence of the s-wave OP
component) is given by the expression

'Hc1(θ, α) = 4π cos θ

�0sN
{'F(θ, α) − 'F(θ = 0, α)} ∼= π�0ξ

2
d s

λ2
abλ

3
J

K2
sd

K2
d

|ad|
as

sin θ cos2 2α

(14)

where N is the number of layers.

4. Summary and discussion

To summarize, we have studied the core structure of the tilted vortices in (dx2+y2 + s)-wave
superconductors and its continuous evolution as the field direction changes. Except when the
magnetic field is close to the ab-plane, the s-wave component of the order parameter has an
antivortex at the central core and four satellite vortices. With increasing angle between the
magnetic field direction and the c-axis (θ ), two s-wave vortices move away from the centre
of the flux line, while the other two s-wave vortices move towards the core. As θ approaches
the critical value θ∗, these two latter s-wave vortices merge with the central s-wave antivortex
and form one vortex with a positive winding number. When the magnetic field lies in the
ab-plane, the s-wave component has one vortex at the centre of the flux line, and the amplitude
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of the s-wave component is strongly dependent on the angle α and vanishes for α = π/4 due
to the symmetry of the functional. For the angles θ < θ∗ the distribution of the s-wave OP
component is similar to the one obtained by numerical calculations [9]. In contrast, for the
angular interval θ > θ∗ the behaviour of our solution differs qualitatively from the distribution
obtained on the basis of the numerical analysis [9]. Instead of the five s-wave vortices, we have
only three s-wave vortices. In the strong-anisotropy limit (s � ξs) we studied the structure of
the s-wave component in the most interesting interval of angles λJ /s � tan θ � λc/s where
the deviations from the 3D theory are strongest. For both anisotropy limits we found an
angle-dependent correction to the lower critical field of a (d + s)-wave superconductor, which
reflects the presence of the s-wave OP and possesses a fourfold symmetry in the ab-plane.
This additional term in Hc1 increases with decrease of temperature and is likely to be essential
for T close to Tcs.
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